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Abstract— We present a system for the detection of small
and potentially obscured obstacles in vegetated terrain. The key
novelty of this system is the coupling of a volumetric occupancy
map with a 3D Convolutional Neural Network (CNN), which
to the best of our knowledge has not been previously done.
This architecture allows us to train an extremely efficient and
highly accurate system for detection tasks from raw occupancy
data. We apply this method to the problem of detecting safe
landing zones for autonomous helicopters from LiDAR point
clouds. Current methods for this problem rely on heuristic
rules and use simple geometric features. These heuristics
break down in the presence of low vegetation, as they do not
distinguish between vegetation that may be landed on and solid
objects that should be avoided. We evaluate the system with a
combination of real and synthetic range data. We show our
system outperforms various benchmarks, including a system
integrating various hand-crafted point cloud features from the
literature.

I. INTRODUCTION

The capability to autonomously find and select good
landing sites is essential for the flexible and safe operation
of unmanned rotorcraft. Unmanned helicopters, as vertical
takeoff and landing (VTOL) vehicles, have the potential
advantage of being capable of landing in a wider variety of
sites than conventional takeoff and landing vehicles. However,
for autonomous helicopters to take full advantage of this
capability they must be able to accurately assess the safety
of sites in which they can land.

Current state-of-the-art systems in LiDAR landing zone
detection ([1], [2]) evaluate the safety of landing zones based
on simple geometric features of point clouds, such as residuals
from a robust plane fit. Nevertheless, this approach may
miss potential landing sites covered in low vegetation such
as grass, despite the fact that grass height of up to 30 cm-
45 cm are considered safe [3]. This occurs because cluttered
vegetation is seen as highly rough terrain, despite being
compliant enough to be safely landed on. While a clear
landing site is preferable over one covered in vegetation
(other things being equal), the ability to find safe landing
zones in terrain covered by low vegetation extends the type of
environments in which the unmanned rotorcraft can operate.

Engineering a system capable of reliably detecting landing
safe landing sites under these conditions is a difficult task.
The appearance of vegetation, terrain and potential obstacles
is highly heterogeneous and difficult to capture with hand-
built rules. These difficulties are compounded by the noisiness
and sparsity that often occurs in real-world point cloud data.
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Fig. 1. Outline of our system: 1) The helicopter acquires scans of
vegetated terrain. The terrain is divided in 1m3 subvolumes. We focus
on the subvolume indicated by the box outline. 2) The scans are converted
to registered point clouds and are used to update a volumetric density map
encoding spatial occupancy, which is the input x to the network. 3) The 3D
convolutional network predicts the safety of the subvolume from the density
data x.

Therefore, it is natural to turn to machine learning and
train a classifier to solve this task. However, this poses its
own challenges. We are interested in efficiently assessing
the safety of areas in the order of 100 m2 to 200 m2 with a
resolution of 1 m2. Our sensor can collect thousands of points
per m2 in a matter of seconds, but only a few may actually
be discriminative to assess landing zone safety; how do we
effectively maintain the relevant information from this large
stream of data? We also need to be able to assess the safety
of candidate landing sites “on-the-fly”, along with a measure
of confidence, for the system to be useful. Finally, how do
we obtain labelled data? Acquiring and labeling the point
cloud data for different vegetation characteristics, LiDAR
viewpoints, obstacle poses, etc. is an expensive and laborious
process. In this paper we address these challenges with the
following contributions:

• A system to efficiently and reliably assess the safety
of landing zones covered in low vegetation (Figure 1).
The system combines a volumetric occupancy map with
a 3D Convolutional Neural Network (CNN), which
to our knowledge has not been previously done. The



occupancy representation encodes information about free
and occupied space and can be incrementally updated
from point clouds. Safety evaluation of a volume with
the 3D CNN takes less than 5 ms/m3.

• The use of semi-synthetic point clouds to generate
realistic automatically labelled point clouds. We use
these to train the CNN to perform probabilistic landing
zone safety predictions using only raw occupancy data
as input, without any hand-crafted features.

II. RELATED WORK

A. Landing zone detection

An early approach using simulated LiDAR for landing zone
detection is Johnson et al. [4]. They propose a system for
landing zone selection based on a relatively simple geometric
analysis of terrain roughness and slope. Whalley et al. [1]
use similar geometric criteria and demonstrate its success in
real data. Scherer et al. [2] also perform a similar geometric
analysis as part of a larger system that also incorporates
factors such as terrain/vehicle interaction, wind direction
and mission constraints. Warren et al. [5] propose a similar
approach based on geometric criteria, using visual structure
from motion instead of LiDAR. As we will see in the
experiments, these simple geometric approaches break down
when the landing site is covered by low vegetation, as this
makes the landing site appear as excessively rough.

B. Ground filtering and terrain modelling

In the area of remote sensing there is a rich body of
literature devoted to extracting bare earth surfaces from aerial
LiDAR point clouds, also known as ground filtering; see [6]
for an overview. These algorithms are designed to discriminate
ground points from non-ground points, regardless of what
kind of objects the non-ground points correspond to. In our
case we need to distinguish between safe and unsafe non-
ground objects.

In robotics there are several terrain modelling approaches
designed to model a ground surface for navigation purposes
(e.g. [7]). These suffer from the converse problem of not
making any distinctions between ground and non-ground
points, which means vegetated terrain will always appear as
highly rough and unsafe.

C. LiDAR Semantic classification

Several works perform of classification of various semantic
classes in LiDAR point clouds, including vegetation and
ground ([8], [9], [10], [11]). However, in our case we are
not interested in the semantic labels of each point or voxel
in a scene, but to assess its overall safety. Regardless, we
have taken various hand-engineered point cloud features from
work in this area to build one of our baselines (section IV).

Another relevant line of work proposes to discriminate
traversable grass from hard obstacles using local statistics
of laser scan lines ([12], [13]). These systems assume
measurements are taken from forward-facing scanners on
ground vehicles, and do not model the ground, which is
important for our task.

D. Convolutional Neural Networks

CNNs [14] are a class of deep learning algorithms that
use the spatial structure of the input (usually image data)
to reduce the amount of parameters to be learned. Modern
variations of CNNs have shown state-of-the-art performance
in various computer vision tasks [15], resulting in widespread
interest from the community.

There has been work in applying CNNs to semantic
labelling [16] and grasp detection [17] from RGBD data.
However, these works simply treat depth images analogously
to RGB images, which ignores their 3D structure and impedes
integration over time. Moreover, in our case, where the point
clouds come from a LiDAR sensor in movement, there is no
direct analog to a depth image.

3D CNNs have been applied to other domains. Viewing
video data as a volume with time as the third dimension, Ji et
al. [18] apply 3D CNNs to human action classification. Flitton
et al. [19] apply a CNN-like method to the classification
of computed tomography imagery. From an architectural
viewpoint these CNNs are similar to ours, as they perform
3D convolution, but otherwise the data and tasks are quite
different.

Recently, Lai et al. [20] applied a form of unsupervised
feature learning related to deep learning to semantic labelling
of indoor scenes from RGBD data. Like this work, they use
a volumetric representation, however, it is not convolutional
but dictionary-based, which is generally less efficient.

III. APPROACH
A. Overview

The input of our system is a stream of globally registered
LiDAR point clouds and a predefined region of interest
with candidate landing sites to be evaluated. The output
is probabilistic safety prediction for each landing site.

To this end our system has two main components. The first
is a volumetric density map for the area containing landing
zones of interest. In our system this map usually covers a
horizontal area of 100 m2 to 200 m2 and a height of 2 m to
4 m. The second is a CNN used to independently predict the
safety of 1 m3 subvolumes within this map.

We note that the output of the system described in this paper
is not meant to be the sole or final arbiter on landing zone
decisions; rather, it is designed meant to output a prediction
to be integrated into a more complex evaluation system that
also takes in consideration mission constraints and objectives,
atmospheric conditions, and other factors ([2], [21]).

B. Volumetric density mapping

Given the region of interest and a point cloud stream,
we incrementally build a volumetric density map, similar in
spirit to occupancy grids [22]. Intuitively, we expect space
containing vegetation to be seen as relatively “porous” by the
LiDAR sensor, compared to space containing solid objects.
Researchers have used this intuition to model vegetation by
counting the ratio of LiDAR hits to pass-throughs [23] for
each grid cell in a map. We use a probabilistic formulation
of this idea, in which we interpret the posterior mean of a



Bernoulli with a uniform Beta prior as the density of each cell.
This formulation was used by [24] to create range keypoints.

More formally, let {zt}Tt=1 be a sequence of registered
range measurements that either hit (zt = 1) or pass through
(zt = 0) a given grid cell with coordinates (i, j, k). We
assume an “ideal beam” inverse sensor model for LiDAR,
where we simply use 3D ray tracing [25] to obtain the number
of hits and pass-throughs for each grid cell.

To track the state of each cell we use the Beta parameters
αtijk and βtijk, with a uniform prior α0

ijk = β0
ijk = 1 for

all (i, j, k). The update for each grid cell affected by the
measurement zt is

αtijk = αt−1
ijk + zt

βtijk = βt−1
ijk + (1− zt)

and the posterior mean for the cell at (i, j, k) is

µtijk =
αtijk

αtijk + βtijk
(1)

While the mean may be calculated incrementally, in
practice we simply keep track of the number of hits and pass-
throughs for each cell and compute the density directly from
Equation 1 as needed. In our current implementation we store
these values in a scrolling grid, which discards measurements
outside a moving bounding box to keep memory usage
constant. In all the experiments in this paper we use voxels
of size 0.05 m3 with maps of up to 20 m×20 m×4 m, which
only takes around 25 MB of space when using two bytes per
cell.

Currently we simply use the posterior mean of each cell
as input to the network. This throws away some information
regarding the uncertainty in our beliefs. We performed
experiments using the posterior variance as an additional
input channel, but did not find significant improvements.

We have also explored the use of occupancy maps [22]
as an alternative representation. However, our preliminary
experiments found slightly inferior performance.

C. Safety prediction

1) Volume subdivision: To predict the safety of a region
we first uniformly subdivide the XY plane of our map into
non-overlapping 1 m2 tiles. For each tile we estimate the
ground surface height from a robust minima calculation of
the height of all the occupied cells within. We then place
a 1 m3 subvolume on each tile, centered on z around the
ground surface height estimate. Finally each subvolume is
evaluated independently with the CNN. In this work we
use a resolution of 0.05 m3, so each subvolume has voxel
dimensions 20× 20× 20, with padding of up 6 voxels per
dimension.

A possible shortcoming of this strategy is that the it is
nontrivial to calculate the ground surface height precisely. In
practice, we have not found this to be a problem, as the CNN
is designed to be robust to small translational shifts.

2) Volumetric Convolutional Neural Nets: CNNs have
three distinguishing features that make them useful for our
scenario. First, they can explicitly make use of the spatial
structure of our problem. In particular, they can learn local
spatial filters useful to the classification task. In our case, we
expect the filters at the input level to encode structures such
as planes and corners. Second, by stacking hidden neural
network layers the network can construct a hierarchy of more
complex features over larger regions of space, eventually
leading to the final classification. For example, if a region of
unobserved space is seen behind a region of occupied space,
that is a strong cue that there is a potential obstacle occluding
the LiDAR rays. Third, they can be trained end-to-end from
the raw volumetric density data to provide a probabilistic
safety prediction for each subvolume. The probabilistic output
allows management of risk, and use of uncertainty to guide
sensing actions.

Let {xn, yn}N1 be a dataset where each xn ∈ RI×J×K
is a subvolume containing density data and yn is the
corresponding ground truth label (safe or unsafe). We aim
to learn a predictor g : X × Y → R assigning a posterior
probability of safety to any given subvolume.

To model this posterior probability we designed a volumet-
ric convolutional neural network patterned after the networks
in [15] extended from 2D (image) data to 3D (volume) data.

Fig. 2. Volumetric convolutional neural net architecture with a single
convolutional layer. The input in the left shows the cross-section of a
subvolume computed from the cloud (darker is denser). In the convolution
layer we show cross-sections of three feature maps extracted from this
patch. These feature maps are pooled and propagated into the dense and
classification layers.

The CNN model consists of an input layer, followed by
one or two convolutional layers, a single dense layer, and a
classification output layer (Figure 2):

1) The input to the network is the subvolume x, a 3D tensor
with dimensions I × J ×K, where xijk = 2µijk − 1
is the current density estimate (Equation 1), scaled and
centered to (−1, 1).

2) The convolutional layer computes F1 feature maps
from the input data by convolving it with F1 learned
filters with spatial dimensions (f1h , f

1
h , f

1
v ) (we consider



only square shapes for the horizontal axes). Its learned
parameters are the filter weights W1 and the bias b1.
The kth feature map is calculated as

vk1 = relu
(
W k

1 ∗ x + bk1
)

where ∗ is the 3D convolution operation, the bias is
added componentwise and relu(·) is simply max(0, x)
applied componentwise (rectification). We then apply
max-pooling with scale hyperparameter P1. This step
downsamples the feature map across the three spatial
dimensions by using the maximum over non-overlapping
blocks of P 3

1 voxels.
In this work we experiment with networks having one
or two convolutional layers. In the latter case the two
convolutional layers are consecutive (considering the
rectification and pooling as part of the layer) and
the second convolutional layer has the same form,
but with parameters (W2, b2) and hyperparameters
(f2h , f

2
v , F2, P2).

3) The dense layer consists of Nh units, each one connected
to all the feature maps of the last convolutional layer.
The output is a vector vh ∈ RNh with the kth value
computed as

vkh = relu
(
W k
hvi + bkh

)
where W k and bk are parameters and i is the index of
the last convolutional layer.

4) The output layer gives a posterior probability computed
as a logistic regression layer

ŷ = σ (Wovh + bo)

where σ(x) = 1/(1 + exp(−x)) and Wo and bo are
parameters.

3) Model selection, learning and inference: The hyper-
parameters of the model are the number of convolutional
layers and (Fi, f

i
h, f

i
v, Pi), where i ranges over the number of

convolutional layers. These are explored through randomized
search, as described in section IV.

The parameters of the model are Θ =
{Wi, bi,Wh, bh,Wo, bo} where i ranges over the number
of convolutional layers. To learn these we use stochastic
gradient descent on the regularized negative log-likelihood:

Θ∗ = arg min
θ
−
∑
n

logP (ŷn|xn; Θ) + λf(Θ)

where P (·) is the probabilistic output of the logistic regression
layer and f(·) is the L2 norm of the weight parameters. We
also apply dropout regularization [15] (with p = .5) on each
layer’s output.

We use the Theano library [26] to compute the gradients
and accelerate computation with the GPU. At runtime,
inference is done by a simple forward propagation from
the subvolume input to the network output.

IV. EXPERIMENTS

A. Overview

To explore the parameters and hyperparameters of our
volumetric CNNs we began with various simple experiments
on a small synthetic dataset. We then did two comparison tests:
one on a larger, more complex synthetic dataset, and another
in a semi-synthetic dataset, consisting of scenes combining
real and synthetic data.

B. Datasets

1) Synthetic datasets: In our synthetic datasets we recreate
the scanning pattern of our LiDAR sensor by simulating its
pulse repetition rate, angular resolution, and the nodding
behavior of its sensor mount. Our sensor is a RIEGL
configured to scans lines perpendicular to the direction of
flight with up to 100◦ horizontal field of view (FOV). It
is mounted on a custom motorized platform for nodding,
optionally allowing up to 100◦ vertical FOV scanning. The
sensor assembly is mounted on an helicopter which uses an
INS for global registration of the point cloud.

We also add Gaussian noise to the range, based on the
manufacturer specifications (σ = 25 mm). Small motions
for the origin of the sensor pose were added by a Gaussian
random walk with zero mean and σ = 2 cm/s. Scenes were
scanned until a point density of 3000 points/m2 was reached,
consistent with the density obtained near the landing zones
in the autonomous landing missions from [21].

The generated LiDAR rays are then intersected against a
synthetic scene consisting of a ground surface, grass blades
and obstacles, with two variations.

1) In the first synthetic dataset the ground surface is a
mesh in which the height of the vertices are perturbed
using Perlin noise with a height range of (−0.05 m,
0.05 m). The grass blades are simulated by 3-triangle
strip of maximum width 3 mm, and normally distributed
height and inclination. The grass placement is generated
according to a homogeneous spatial Poisson process
with a configurable intensity, as in [12]. The box is
generated with (0.15 m)3 dimensions at a uniformly
random location and yaw angle on the plane.

2) In the second dataset the box obstacles were replaced
with a selection of 3D models obtained from the Trimble
3D Warehouse. In particular, we use 11 models of rocks
(modelled after actual rocks by Intresto1), a tire, and
cinder blocks (Figure 3). The height of the objects ranges
between 15 cm to 40 cm, and are all less than 50 cm
across.

In each dataset various parameters were systematically
sweeped as shown Table I. For the first dataset 20 instances
were generated per parameter setting, resulting in 26860
scenes. In the second dataset 40 instances were generated,
resulting in 28760 scenes. In each case only half the instances
have an obstacle; these are considered unsafe, while the rest
are considered safe.

1www.intresto.com.au
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Fig. 3. Left: renderings of 6 of our CAD models. Middle and right: Two
synthetic point clouds colored by point cloud type. Best seen in color.

TABLE I
SIMULATION PARAMETER SWEEP FOR SYNTHETIC DATASETS.

Dataset Parameter Values

1 Blade per m2 100, 200, . . . 1200
Scanline angular resolution ◦ 0.05, 0.1, 0.2, 0.41

2 Blade per m2 100, 200, . . . 1600, 1800
Blade width mm 3, 5, 8

Both Blade mean height m 0.1, 0.2, 0.3
Sensor distance in x-axis m −5.0,−10.0
Sensor height m 4.0, 8.0

Finally, since we wish the learned models to be invariant
to the global orientation of the grid frame and to small
errors in our ground height estimation procedure, the point
cloud datasets are augmented dynamically during training by
creating 20 perturbed copies of each point cloud. Each copy
is rotated with a randomly chosen yaw angle and translated
with a uniform random shift of (−0.3 m, 0.3 m) along the z
direction.

2) Simulator validation: In order to validate the simulator
for the first synthetic dataset we constructed a calibrated
target and scanned in the laboratory. The target and a render
of its synthetic version, along with a range histogram of 1500
points and an occupancy grid are depicted in Figure 4. Note
that the blades are randomly generated and not meant to
match the real grass on an individual blade level.

Fig. 4. Top row: the real point cloud and its simulated counterpart. Bottom
row: the calibrated target and a render of its synthetic version.

3) Semi-synthetic data: In reality, the structure of the
vegetation and terrain are much richer than our simple
Poisson/Perlin processes. Moreover, we have observed that
our simple model of range sensing is not very accurate for
vegetation, despite being quite reasonable for solid objects.
This has also been observed by Deschaud et al [27].

Therefore we propose the use of semi-synthetic point
clouds, consisting of real point cloud data for vegetation and
ground combined with simulated scans for solid obstacles.
Since our sensor setup reports the estimated pose of the
sensor at each measurement time, we can simply use our
simulator with sensor rays obtained from actual point clouds,
and build semi-synthetic scenes by inserting virtual obstacles
in the world frame and altering rays if they intersect with
the obstacle (see Figure 5). As before, we add noise to the
simulated rays. To generate the semi-synthetic scenes we used

Fig. 5. Left to right: Real point cloud data, with an inserted CAD rock
model used to simulate an obstacle, and the resulting semi-synthetic cloud.

data from 8 flights. The first two are from data collection
flights performed in the Rock airport in Pittsburgh, PA on
October 2013. The remaining six are autonomous landing
missions performed on a site in Quantico, VA on February
2014 as part of the AACUS project [21]. Figure 6 shows
images of the vegetation in these sites. We manually selected

Fig. 6. Left: Vegetation in the Quantico landing site. Right: vegetation in
the Pittsburgh Rock airport.

areas known to be safe for landing and from these sampled
on average 1000 patches for each flight resulting in 21000
patches. We then insert random synthetic CAD obstacles with
random positions and orientations in half of the patches. The
point cloud dataset was also subject to the same augmentation
procedure as the synthetic datasets.

C. Evaluation metrics

We use Receiver Operating Characteristic (ROC) curves
to compare the different algorithms. For any given threshold
on a detector with continuous output, we may commit two
types of errors (Figure 7): erroneously labelling an unsafe
subvolume as safe (a false positive), or failure to label a



safe subvolume as safe (a false negative). A ROC curve is
generated by varying this threshold and evaluating the false
positive rate (FPR) and true positive rate (TPR). An ideal
algorithm would always have TPR equal to 1, and random
chance would have TPR=FPR.

Fig. 7. Possible outcomes for landing zone safety prediction. The gray
squares represent obstacles.

Note that we are implicitly assuming each volume has
a .5 prior probability of being safe; this can be easily
changed to incorporate prior knowledge by scaling the output
appropriately.

D. Baselines

Our first baseline is based on the residuals of a robust
plane fit, as in [2] and similar geometric methods. The sum
of the residuals (with each clipped to 0.1 m for robustness)
was used as the continuous output in the ROC curve.

The second baseline is a Random Forest classifier [28],
using the implementation of [29]. It is trained with the same
raw volumetric data as our networks. We used 20 trees with
no maximum depth. Random forests are known to be robust
and usually effective classifiers that work well with high-
dimensional data. This baseline has no built-in invariance to
spatial shifts.

The third baseline is a system built with various well-known
features from the literature on point cloud classification. These
include three spectral shape features [30], three directional
features and three height-related features [8], shape features
from [9] and range variance features from [12]. We calculate
each feature on a per-voxel basis, with 3×3×3 voxel spatial
smoothing for the spectral features. We carefully tuned these
features to work well in this data, as they were part of our
first approach to solve this problem.

We construct a K-means codebook with 512 words from
1/4 of the training data and represent each volume with
a softly-quantized Bag of Words (BoW) [31]. Finally, we
classify the BoW with a random forest classifier trained using
the same parameters as before. This approach is similar to
approaches that until recently were considered state-of-the-art
for various tasks in computer vision. While the BoW ignores
any spatial structure in the data, the features encode some
local spatial context (e.g. height relative to the ground).

E. Results

1) CNN hyperparameters: The first synthetic dataset was
reserved to choose the hyperparameters of our CNN. To this
effect we performed random hyperparameters search using

TABLE II
AREA UNDER CURVE (AUC) FOR OUR EXPERIMENTS.

Method AUC Synth2 AUC Hybrid

Feature BoW 512 RF 0.931 0.66
CNN C7-F64-P4-D512 0.97 0.93
CNN C7-F32-P2-C5-F64-P2-D512 0.97 0.95
Plane Residuals 0.51 0.50
Raw volumetric RF 0.80 0.73

Hyperopt [32]. We vary the number of convolutional layers
(1, 2), filter shapes (f1h , f

1
v , f

2
h , f

2
v ) ∈ {3, 5, 7}4, number

of hidden nodes Nh ∈ (27, · · · , 212), number of filters
(F1, F2) ∈ {32, 64, 128}2 and pooling factors (P1, P2) ∈
{1, 2, 4}2. Training is limited to 6 epochs with a minibatch
size of 20. We use de facto standard learning rate (0.01),
momentum (0.9) and L2 regularization (0.0005) parameters
for learning, with half of the data for training and half for
validation. After three days and 400 different hyperparameter
evaluations, we found many of the best networks had virtually
identical performance. We chose a representative single-
convolution layer net and a two convolution-layer net for
further evaluation. The first net uses filters f1h = f1v = 7,
F1 = 64, P1 = 4 and Nh = 512. The second uses filters
f1h = f1v = 7, f2h = f2v = 5, F1 = 32, F2 = 64 and
Nh = 512. In shorthand, we use C7-F64-P4-D512 for
the first net and C7-F32-P2-C5-F64-P2-D512 for the
second.

2) Results on second synthetic dataset: We trained each
model on half of the (shuffled) data and evaluated performance
on the second half. To avoid overfitting there are no obstacle
models in common between the training and testing dataset.
ROC results are shown in Figure 9 and Table II.

Fig. 8. ROC curve on the second synthetic dataset.

The two CNN approaches take the lead, and perform almost
indistinguishably. This suggests they are learning similar
hypotheses despite their different architecture, or that they
are reaching some limit related to the dataset. The plane
residuals perform barely above chance. This is due to the
fact that by construction, our clouds are relatively dense and
always have at least some clutter.

3) Results on semi-synthetic dataset: We use the same
protocol on the semi-synthetic dataset. Results are shown in
Figure 9 and Table II.

In this dataset the performance drops considerably. This



Fig. 9. ROC curve on the semi-synthetic dataset.

is not surprising considering that the semi-synthetic dataset
is considerably noisier, and both the ground and vegeta-
tion have a more heterogeneous appearance. In this case
C7-F32-P2-C5-F64-P2-D512 shows a superior perfor-
mance to C7-F32-P4-D512, suggesting the extra layer is
beneficial in this scenario. It is interesting to see that in
this case the raw volumetric random forest overtakes the
BoW approach. This indicates the spatial information being
discarded by the BoW is discriminative. The CNN, with an
intermediate degree of spatial invariance, achieves the best
results in both cases.

4) Timing: Depending on the parameters of the network,
training for 6 epochs takes between two to six hours on our
Core 2 DUO equipped with a 3GB GTX580 GPU. On the
other hand, labeling a 1 m3 patch takes less than 5 ms, and
ray tracing (which is done on the CPU) to compute hit/passes
and density on 3000 points takes less than 1 ms per 1000
points for a 400 × 400 × 40 voxel grid. While not a fair
comparison, as it runs on the CPU, the BoW algorithm by
itself takes around 200 ms per volume. Aroud half of the
time is spent performing feature extraction, and the other half
is spent performing quantization.

5) Qualitative results: For a video of our method run-
ning in real time, see the accompanying video submission
(Figure 10).

Fig. 10. Our method evaluating a 10m × 10m region, from the
accompanying video submission.

Some representative successes and failures from the semi-
synthetic dataset are shown in Figure 11. Our method
sometimes results in false negatives when the vegetation is

dense enough to resemble rocks, or results in false positives
when the obstacle is very small or mostly occluded. In order
to overcome these problems we are considering the integration
of other sensor modalities and active sensing.

Fig. 11. Top: two correct assessments (true positive and true negative).
Bottom: Two failures (false negative and false positive). Obstacles are shown
in red. In the first failure case, there are several dense bushes which are
similar to rocks. In the second, only a very small portion of the obstacle is
visible.

Fig. 12. Selected filters from C7-F32-P4-D512 on the second synthetic
(top row) and the hybrid (bottom row) datasets, where darker means denser.

6) What is the network learning?: A common way to
visualize what CNNs learn is to examine the weights of
the first convolutional layer, which have the same spatial
structure as the input data. Figure 12 shows four 7× 7× 7
filters of the single-convolutional layer in each of the datasets
for C7-F32-P4-D512. The filters seem to have features
corresponding to corners, blobs and plane-like structures.

Understanding the higher levels of the network is less
straightforward. Simonyan et al [33] proposed a techique to
hallucinate the “ideal” input for each category predicted by
the network. We apply this method on the network trained on
the first synthetic dataset (Figure 13), which only has simple
box-like obstacles. We observe the ideal unsafe volume has
multiple box-like sets of planes, whereas the ideal safe volume
has visible ground and free space.

V. CONCLUSIONS

In this paper we have proposed a system for efficient and
reliable detection of safe landing zones covered in vegetation.
The key component of our system is a novel volumetric
convolutional neural network system operating on density
grid maps extracted from LiDAR range data.



Fig. 13. Cross-sections of hallucinated unsafe and safe volumes from the
first synthetic dataset.

Our experiments with synthetic and real data show that
our system outperforms various baselines, including a system
incorporating many well-known hand-engineered features,
despite being trained directly on raw data. This mirrors
similar results in computer vision [15]. The performance
of our system suggest this is a viable option to increase the
ability of unmanned rotorcraft to operate in a wider range of
environments.

In the immediate future, we plan to perform more extensive
evaluations, incorporating more 3D models and more real
data and data with real obstacles. We are also considering the
incorporation of additional information beyond range, such
as LiDAR intensity, full waveform data or data from other
sensing modalities such as camera or radar.

In the longer term we are interested in using the volumetric
CNN framework for other tasks, such as semantic point cloud
labelling. We would also like to close the sensing-planning
loop by using the uncertainty reported by our system to
actively guide sensing.
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