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Abstract— Histograms of Local Binary Patterns (LBPs) and
variations thereof are a popular local visual descriptor for
face recognition. So far, most variations of LBP are designed
by hand or are learned with non-supervised methods. In this
work we propose a simple method to learn discriminative LBPs
in a supervised manner. The method represents an LBP-like
descriptor as a set of pixel comparisons within a neighborhood
and heuristically seeks for a set of pixel comparisons so as to
maximize a Fisher separability criterion for the resulting his-
tograms. Tests on standard face recognition datasets show that
this method can create compact yet discriminative descriptors.

I. INTRODUCTION

Local visual descriptors [1] have become part of state-

of-the-art systems in many areas of computer vision. Face

recognition is no exception, and methods based on local

descriptors have been shown to be more robust to occlusion,

misalignment and moderate pose changes than traditional

holistic methods such as [2], [3]. Comparisons of methods

based on local descriptors for face recognition may be found

in [4] and [5].

A particularly simple and successful local visual descriptor

for face recognition is the histogram of LBPs as introduced

by [6]. Since their introduction, several variations have

appeared, such as local ternary patterns [7], elongated local

binary patterns [8], multi-scale LBPs [9], patch-based LBPs

[10], center symmetric LBPs [11], LBPs on Gabor-filtered

images [12], [13], and LBPs on histograms of gradients [14],

to cite a few.

The main contribution of this paper is a simple method

to automatically learn a discriminative, compact LBP-like

descriptor from the data. The method represents LBP-like

descriptors as a set of pixel comparisons within a small

region, and seeks from among all the possible comparisons a

subset that maximizes the discriminativity of the output his-

tograms as measured by a Fisher class separability criterion.

This method avoids hand-crafted designs (e.g. [9], [11]) and

is supervised, unlike e.g. [15], [16]. It thus follows in the

steps of [17], but is an improvement in various ways, as we

describe in more detail below. Since the method explicitly

searches for discriminative patterns, we dub it Discriminative

Local Binary Patterns (DLBP). As a testing scenario, we

consider the traditional task of closed set face identification.

Under this task, we are given a gallery of identified face

images, such that, for any unidentified probe image, the goal

is to return one of the identities from the gallery.

This paper is organized as follows. Section I-A outlines

the face recognition pipeline. Section II describes in detail

the DLBP descriptor and contrasts it to the traditional LBP

descriptor. Section III discusses related approaches. Section

IV describes the results on two standard benchmark datasets.

Finally, section V presents the main conclusions of this work.

A. Face recognition pipeline

Our face recognition pipeline is similar to the one pro-

posed in [6], but we incorporate a more sophisticated illu-

mination normalization step [7]. Figure (1) summarizes its

operation, given by the following main steps:

1) Crop the face region and align the face by mapping the

eyes to a canonical location with a similarity transform.

2) Normalize illumination with Tan and Triggs’ [7] Dif-

ference of Gaussians (DoG) filter.

3) Partition the face image in a grid with equally sized

cells, the size of which is a parameter.

4) For each grid cell, apply a feature extraction operator

(such as LBPs or DLPBs, as described below) to each

pixel in the grid cell. Afterward, create a histogram

of the feature values and concatenate these histograms

into a single vector, usually known as “spatial his-

togram”.

5) Classify a probe face with the identity of the nearest

neighbor in the gallery, where the nearest neighbor

distance is calculated with the (possibly weighted) L1

distance between the histograms of the corresponding

face images. In our algorithm, we use one weight

for each grid cell. That is, the distance between two

spatial histograms S1 = (H1
1 , · · · , H1

M ) and S2 =
(H2

1 , · · ·H2
M ) is

dist(S1, S2) =
M∑

m=1

wm

∑
i

|H1
mi −H2

mi| (1)

where Hmi is the ith bin of the mth histogram. We

specify how the weights are obtained below.

II. LOCAL BINARY PATTERN DESCRIPTORS

A. Traditional Local Binary Patterns

Local binary patterns were introduced by Ojala et al [18]

as a fine scale texture descriptor. In its simplest form, an LBP

description of a pixel is created by thresholding the values

of a 3× 3 neighborhood with respect to its central pixel and

interpreting the result as a binary number.
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Fig. 1. The face recognition pipeline.
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Fig. 2. The LBP operator versus the DLBP operator. In the LBP operator,
pixel comparisons are restricted to a predetermined pattern; in DLBP, the
pattern is learned discriminatively.

In a more general setting, an LBP operator assigns a

decimal number to a pair (c,n),

b =
S∑

i=1

2i−1I(c, ni)

where c represents a center pixels, n = (n1, . . . nS) corre-

sponds to a set of pixels sampled from the neighborhood of

c according to a given pattern, and

I(c, ni) =

{
1 if c < ni

0 otherwise

This can be seen as assigning a 0 to each neighbor pixel in

n that is smaller than the center pixel c, a 1 to each neighbor

larger than c, and interpreting the result as a number in base

2. In this way, for the case of a neighborhood of S pixels,

there are 2S possible LBP values. Figure 2 illustrates the

operation of LBPs and DLBPs (explained below).

B. Our approach: Discriminative local binary patterns

Traditionally, the neighbor pixels are sampled in a circular

shape that is parameterized by S and r, the radius in pixels of

� �

Fig. 3. Pixel neighborhood used in DLBP. The inner square is the center
pixel c, and the neighborhood corresponds to all the pixels enclosed in the
larger square. The size of the neighborhood is determined by the radius r.

the circle. Thus, the 3×3 descriptor corresponds to S = 8 and

r = 1. But other configurations are possible. For example,

[8] proposes the use of elliptical shapes, parameterized by

the length of the axes, and [10] propose a pattern with two

rings. In place of these hand-crafted shapes we propose to

learn the best patterns in a supervised fashion. In particular,

the set of neighbors n = (n1, . . . , nS) is not determined

by a parametric form but may correspond to arbitrary pixels

within a small distance from the center, as seen in figure

2. Thus, the space of possible patterns in our method is

determined by two parameters: r and S. r is the size of the

neighborhood, and has a different meaning than in LBP; the

neighbors ni must be within a square neighborhood centered

on c, but not necessarily at distance r (see figure 3). S, as

in LBP, is the number of samples. In general, a larger S
results in better classification accuracy, but has a larger cost

in computation and storage.

Within the square neighborhood given by r, there are

(2r + 1)2 − 1 possible pixel comparisons. We wish our

DLBP operator to consist of a subset n of those comparisons

of size S that maximizes the discriminativity of the output

histograms. To quantify discriminativity we use a Fisher-like

class separability criterion:

J =
(μw − μb)

2

σ2
w + σ2

b

(2)

where μw and μb are the mean within-subject and between-

subject distances of the histograms induced by the set n,

and σ2
w and σ2

b are the variances of the within-subject and

between-subject distances of the histograms induced by the

set. This criterion was used by Zhang et al [12] to weigh
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different facial regions.
Unfortunately, finding the set n of comparisons that max-

imizes J subject to the size constraint of S is an intractable
combinatorial optimization problem. Therefore we use a
simple iterative heuristic algorithm, stochastic hill climbing,
to obtain an approximate solution. Other heuristics, such as
simulated annealing or Tabu search could also be used. Infor-
mally, the algorithm begins with a random solution (a random
set of pixel comparisons, in our case) and iteratively attempts
to improve it by making small modifications (swapping a
pixel comparison by a different one). In pseudo code, the
hill climbing procedure is

proc hillclimb(set) ≡
J∗ := − inf
for i := 1 to hill climbing iterations do

new set := copy(set)
J ′ := J(new set)
for j := 1 to tweaks do

set’ := tweak(copy(set))
if J(set’) ≥ J ′

then
J ′ := J(set’)
new set := set’

fi
od
set := new set
if J ′ ≥ J∗

then
best := set
J∗ := J ′

fi
od
return best

.
proc J(set) ≡

Quantize data into histograms with set
evaluate and return (μw − μb)

2/
(
σ2
w + σ2

b

)

.
proc tweak(set) ≡

Select random pixel comparison ni from set
Set ni to another random pixel within the neighborhood
that does not already belong to set

return set
.

We run this algorithm five times and store the best

set obtained during the hill climbing phase along with its

associated J∗ value.

Since we expect different patterns to be discriminative in

different face regions, we learn a new DLBP for each grid

cell. One of the side benefits of the optimization scheme is

that we may use the J∗ obtained for each cell as a weight

for the distance calculation in (1), assuming that J∗ reflects

how discriminative is the facial region corresponding to the

grid cell.

The optimization process has its own set of parameters,

namely the number of hill climbing iterations and the number

of tweaks tested at each hill climbing iteration. These are

dictated mostly by the available computing resources. We

use 60 hill climbing iterations and 30 tweaks tested per

iteration. With these parameters, our C++ implementation

of the training process takes around 4 hours (in total, for all

face regions) on a 1.6GHz laptop with S = 8.

III. RELATED WORK

Our method can be seen as a simplification and an im-

provement to Decision Tree-Local Binary Patterns (DTLBP)

[17]. This method models LBPs as trees and uses an ID3-like

[19] algorithm to learn a discriminative LBP-like descriptor.

DLBPs use a simpler set of pixel comparisons in place of

the tree, which is faster and simpler to learn. In addition,

optimizing the Fisher separability criterion results in better

classification accuracy with the nearest neighbor method than

the entropy gain criterion used by ID3.

The simplification of trees to sets of comparisons is

analogous to the simplification of random trees to random

Ferns proposed for the task of keypoint matching in [20]. The

authors observe that Ferns give similar results to trees but

have a smaller computational complexity. Though Ferns are

similar to our DLBPs, DLBPs use single pixel comparisons

instead of planes and do not use the seminaive Bayesian

method proposed in [20].

Ahonen et al [21] proposed to view the difference c− ni

of each neighbor pixel ni with the center as the response of

a particular filter centered on c. Under this view, the LBP

operator is a coarse way to quantize the joint responses of

various filters (one for each neighbor ni). Likewise, DLBP

can also be seen as a quantizer of these joint responses, but

it is built adaptively and discriminatively.

Trees have become a popular quantization method in

computer vision. Moosmann et al [22] use Extremely Ran-

domized Clustering forests to create codebooks of SIFT

descriptors [23]). Shotton et al. [24] use random forests to

create codebooks for use as features in image segmentation.

While the use of trees in these works is similar to ours, they

use the results of the quantization in a very different way;

the features are given to classifiers such as SVMs, which are

not suitable for use in our problem.

Wright et al. [25] use unsupervised random forests to

quantize SIFT-like descriptors for face recognition. The main

difference with our algorithm is that we do not quantize

complex descriptors extracted from the image. In addition,

the accuracy of their algorithm on the tested datasets is

relatively poor compared to other state-of-the-art algorithms.

This may be due to the use of an unsupervised algorithm to

construct the trees.

There are various recent works using K-Means to construct

codebooks to be used for face recognition in a framework

similar to ours. Meng et al [26] use it to directly quantize

patches from the grayscale image patches. Xie et al [16] as

well as [15] use it to quantize patches from images convolved

with Gabor wavelets at various scales and orientations. These

algorithms are the closest in spirit to our work, since they are

partly inspired by LBPs. These algorithms differ from ours

in the algorithm used to construct the codebook. They use K-

Means, which has the drawback of not being supervised and

thus unable to take advantage of labeled data. In addition, for

the same number of codes, K-Means are less efficient than

DLBPs. Finally, unlike ours, two of the above algorithms

incorporate Gabor wavelet features; the cost of convolving

the image with the real and imaginary parts of 40 or so Gabor

filters may be excessive for some applications.

Our method also differs from methods that use methods

such as Boosting to select histograms corresponding to

particular LBP windows or scales (e.g. [9], [27]) or histogram
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Fig. 4. Effect of neighborhood samples (S) and radius on accuracy of
DLBP on FERET fb.

bins (e.g. [28], [29]). The reason is that we do not select from

among LBP features that have already been extracted, but

instead search for the best feature to extract. Selecting from

pre-extracted features is not feasible with a large number of

pixel comparisons (S), since the length of the histograms

grows exponentially with S.

Another line of investigation worth mentioning is the use

of heuristic algorithms, and in particular evolutionary algo-

rithms, to construct visual descriptors for different purposes.

Perez and Olague [30] use Genetic Programming (GP) with a

large set of terminals to construct invariant region descriptors

for visual matching. Yu and Bhanu [31] also use GP with a

large set of operators and Gabor filtering to induce features

for facial expression recognition. Kowaliw et al [32] use a

variant of GP known as cellular GP to build features for an

image classification task. Compared to these approaches, our

features are simpler, since they do not use a complex set of

operations and terminals.

IV. EXPERIMENTS

We perform experiments on the FERET [33] and the CAS-

PEAL-R1 [34] benchmark databases. We report results with

and without weights, where the weights for each region are

set as the final J value from (2) for the set of each region.

Regarding the parameters, in order to give the algorithm

flexibility in the choice of patterns we use a relatively

large radius, r = 7 1. This was the radius used in [17].

Figure IV illustrates the effect of radius and neighborhood

samples on the accuracy of DLBP on FERET fb. The trend,

also seen in other datasets, is that all radii larger than 2

perform comparably. S is varied to evaluate the size-accuracy

tradeoff. In all images we partition the image into an 7× 7
grid, as originally used in [6]. While in general we have

found this partition to provide good results, it is likely that

adjusting the grid size to each database may yield better

results.

For each experiment we show our results along with the

best results from similar works in the recent literature: the

original LBP algorithm from Ahonen [6]; the Local Gabor

Binary Pattern (LGBP) algorithm [12], which applies LBP

to Gabor-filtered images; the Local Visual Primitive (LVP)

1To handle the border pixels, we simply added a black border of width
7 to each image. More sophisticated schemes gave similar or worse results.

algorithm [26], which uses K-Means to quantize grayscale

patches; the Decision Tree Local Binary Pattern (DTLBP) al-

gorithm [17], which uses decision trees to find discriminative

LBPs on grayscale images; Local Gabor Textons (LGT) algo-

rithm [15] and the Learned Local Gabor Pattern (LLGP) [16]

algorithm, which use K-Means to quantize Gabor filtered-

images; and the Histogram of Gabor Phase Patterns (HGPP)

algorithm [35], which quantizes Gabor filtered images into

histograms that encode not only the magnitude, but also the

phase information from the image. For each algorithm, if a

weighting scheme is used, we show the best results with the

weighting scheme under the name of the algorithm followed

by ’-W’. We also show the results of using a purely random

set of pixel comparisons as RLBP (for Random LBP) to

assess the effects of the supervised optimization. For the

LBP algorithm, we give the accuracy obtained by the original

authors as well as by our own implementation. The reason is

that due to the different preprocessing and border handling

the accuracies differ. In addition, for LBP we add results with

a radius of 7, since DLBP uses a radius of that scale, and

also add results with the weight given by the same Fisher J
value as in DLBP. We also show results with and without

Tan-Triggs normalization to show the effect this step has on

the results.

The results cited from other papers are not strictly com-

parable, since there may be differences in preprocessing,

and for FERET, the training set used, but they provide a

meaningful reference.

A. Results on FERET

For FERET, we use fa as gallery and fb, fc, dup1 and

dup2 as probe sets. For training, we use the FERET standard

training set of 762 images from the training CD provided by

the CSU Face Identification Evaluation System package [36].

The results are summarized in tables I and II.

We can see that our algorithm does well on FERET,

specially when normalization is used. Without normalization,

DLBP’s accuracy suffers on fc, which varies illumination.

With Tan-Triggs normalization it obtains the best results on

fb, dup1 and dup2, and comparable to the best on fc.

B. Results on CAS-PEAL-R1

In CAS-PEAL-R1 we use the standard training and gallery

subsets, and we use the Expression, Lighting and Accessory

subsets as probes. The results are summarized in tables III

and IV.

In this dataset our algorithm also does well. It obtains the

best results in the Expression and Accessory datasets, tying

with HGPP in the latter. As before, without normalization the

performance of DLBP suffers on datasets with illumination

variation. On the lighting dataset, the overall performance

of all the algorithms is rather poor. In this case, the best

performance are given by LGBP, HGPP and LLGP. All these

algorithms use features based on Gabor wavelets, which

suggests that Gabor features provide robustness against the

extreme lighting variations in this dataset.
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No TT With TT
Method fb fc dup1 dup2 fb fc dup1 dup2

LBP2
8 .96 .53 .60 .40 .93 .96 .72 .67

LBP7
8 .96 .34 .61 .45 .98 .96 .79 .78

RLBP7
5 .94 .28 .57 .35 .95 .93 .71 .66

RLBP7
6 .95 .28 .57 .36 .96 .95 .75 .75

RLBP7
7 .96 .38 .59 .37 .97 .95 .78 .73

RLBP7
8 .96 .32 .60 .39 .97 .97 .80 .75

RLBP7
9 .97 .44 .61 .42 .98 .97 .83 .81

DLBP7
5 .96 .29 .61 .40 .97 .94 .77 .75

DLBP7
6 .97 .31 .61 .41 .98 .97 .80 .79

DLBP7
7 .98 .39 .63 .44 .98 .98 .81 .80

DLBP7
8 .98 .37 .64 .47 .98 .99 .84 .82

DLBP7
9 .98 .40 .66 .48 .99 .99 .85 .84

LBP-W2
8 .98 .54 .62 .45 .97 .97 .72 .68

LBP-W7
8 .98 .32 .65 .53 .99 .97 .81 .80

RLBP-W7
5 .97 .27 .59 .41 .97 .93 .72 .69

RLBP-W7
6 .98 .30 .61 .45 .98 .94 .77 .76

RLBP-W7
7 .98 .36 .63 .48 .99 .97 .79 .74

RLBP-W7
8 .98 .31 .65 .53 .99 .97 .81 .78

RLBP-W7
9 .98 .38 .65 .54 .99 .98 .81 .79

DLBP-W7
5 .98 .28 .63 .47 .98 .94 .78 .78

DLBP-W7
6 .99 .34 .63 .49 .99 .98 .82 .81

DLBP-W7
7 .99 .42 .66 .53 .99 .98 .85 .85

DLBP-W7
8 .99 .41 .67 .54 .99 .99 .85 .85

DLBP-W7
9 .99 .48 .68 .55 .99 .99 .86 .85

TABLE I

ACCURACY ON FERET PROBE SETS. DLBPr
d CORRESPONDS TO A SET

OF SIZE d AND RADIUS r. “-W” INDICATES WEIGHTS. “NO TT”

INDICATES NO ILLUMINATION NORMALIZATION.

C. Discussion

The results show that DLBPs are highly discriminative

features. However, it seems that without normalization the

learning process tends to overfit on datasets with intense

illumination variation and performance suffers. It should be

noted that the normalization is a computationally inexpensive

process; it consists in convolution with a Difference of

Gaussians filter and a couple of equalization steps. This is

much faster than convolution with the real and imaginary

parts of 40 Gabor filters, as in LGBP, LGT and HGPP.

As expected, the supervised optimization process improves

upon the purely random descriptor, though in some cases the

difference is relatively small. Thus RLBP could be of interest

for unsupervised scenarios.

We highlight the the ability our algorithm to create com-

pact yet discriminative descriptors. Even when using S = 5,

which yields histograms of size 32, it performs comparably

or better than (non-uniform) LBP, of size 256. Our largest

and best-performing descriptor (S = 9) yields histograms

of size 512, which are smaller than those used by Gabor-

based approaches that concatenate histograms for each Gabor

orientation and scale; for example, LLGP uses 12 Gabor

filters and a codebook of K = 70 for each, giving histograms

of size 12×7 = 840; LGBP [12] uses 40 Gabor images and

an LBP of S = 8 for each, resulting in histograms of size

256×40 = 10240. DLBP’s histograms are also much smaller

Method fb fc dup1 dup2

LBP [6] .93 .51 .61 .50
LGBP [16] .94 .97 .68 .53
LVP [16] .97 .70 .66 .50
LGT [15] .97 .90 .71 .67
HGPP [35] .98 .99 .78 .76
LLGP [16] .97 .97 .75 .71
LBP-W [6] .97 .79 .66 .64
LGBP-W [16] .98 .97 .74 .71
LVP-W [16] .99 .80 .70 .60
HGPP-W [35] .98 .99 .78 .77
LLGP-W [16] .99 .99 .80 .78
DT-LBP [17] .99 1.0 .84 .80
DLBP-W7

9 (ours) .99 .99 .86 .85

TABLE II

COMPARISON OF ACCURACY WITH OTHER ALGORITHMS ON FERET

PROBE SETS. FIGURES FROM ENTRIES WITH CITATIONS COME FROM THE

RESPECTIVE CITATION.

than the ones used in [17]; the results we show are from a

descriptor with histograms of size 213.

V. CONCLUSIONS AND FUTURE WORK

We have proposed a novel method that uses training data to

learn compact and discriminative LBP-like descriptors. The

algorithm obtains encouraging results on standard databases,

and presents better results that several state-of-the-art alterna-

tive solutions. In particular, with respect to a face recognizer

based on the widely used LBPs, our approach presents an

increase in accuracy, demonstrating the advantages of using

an adaptive and discriminative set of local binary patterns.

Regarding future work, we are evaluating how to increase

the robustness of the descriptor to datasets with intense

illumination variation.
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